$b_0 = 0.580$, and $b_H = -0.374$ (all units in 10^{-12} cm).

- 8) G. E. Bacon, Acta Crystallogr., Sect. A, 28, 357 (1972).
- (9) The disordered model previously used by the x-ray diffraction study² for the carbon atoms of the tetraethylammonium cation is considerably improved due to the higher resolution of the neutron diffraction data. The cation is randomly distributed between two centrosymmetrically related orientations with no accompanying superimposed positioning of the methyl carbon atoms. All of the half-weighted carbon and hydrogen atoms in the monocation were located and refined in the neutron diffraction study.
- calculated were located and refined in the neutron diffraction study. (10) $R(F_o) = \sum ||F_o| - |F_c||/\Sigma|F_o|$, $R(F_o^2) = \sum |F_o^2 - F_c^2|/\Sigma F_o^2$, $R_w(F_o^2)$ $= [\sum w_i|F_o^2 - F_c^2|^2/\Sigma w_i F_o^4]^{1/2}$. σ_1 , the standard deviation of an observation of unit weight, is defined by $[\sum w_i|F_o^2 - F_c^2|/(n-p)]^{1/2}$ where $w_i^{-1} = \sigma^2(F_o^2) = \sigma_c^2(F_c^2) + (0.02F_o^2)^2$; σ_c is determined by counting statistics, n denotes the number of observations, and p denotes the number of parameters varied during the least squares.
- (11) The plane of each of the two coplanar Cr-H-Cr fragments is oriented at angles of 44.2 and 45.9° with respect to the two perpendicular mean planes each passing through the two chromium atoms and the two axial and four equatorial ligands.
- (12) In contrast to the direction of $\mu(3)$ for the bridging hydrogen atom, the maximum rms components of thermal displacement for the axial carbon and oxygen atoms (viz., $\mu(3) = 0.287(3)$ Å and $\mu(3) = 0.391(4)$ Å, respectively) are directed essentially parallel to the Cr–H–Cr plane and normal to the Cr–Cr line. The acute angles between the direction of $\mu(3)$ for the bridging hydrogen atom and $\mu(3)$ for the axial carbon and oxygen atoms are 86 (4)° and 87 (4)°, respectively.
- (13) The estimated displacements were based upon the assumption that the two half-weighted carbon and two half-weighted oxygen atoms can be represented with isotropic thermal displacement of 0.20 and 0.24 Å, respectively; each of these values is approximately equal to the mean value of the thermal displacements of the composite peak normal to the corresponding maximum displacement, μ(3).
- (14) (a) M. Andrews, D. L. Tipton, S. W. Kirtley, and R. Bau, J. Chem. Soc., Chem. Commun., 181 (1973); (b) J. P. Olsen, T. F. Koetzle, S. W.Kirtley, M. Andrews, D. L. Tipton, and R. Bau, J. Am. Chem. Soc., 96, 6621 (1974).
- (15) R. D. Wilson, S. A. Graham, and R. Bau, J. Organomet. Chem., 91, C49 (1975).
- (16) In contrast to the x-ray determined bent nonhydrogen geometry of the monoanion in $[(Ph_3P)_2N]^+[W_2(CO)_{10}(\mu_2-H)]^{-15.17}$ and in $[(Ph_3P)_2N]^+-[Mo_2(CO)_{10}(\mu_2-H)]^{-15}$ the chromium monoanion in $[(Ph_3P)_2N]^+-[Cr_2(CO)_{10}(\mu_2-H)]^-$ was found from an x-ray diffraction study¹⁷ to have a pseudo D_{4h} nonhydrogen framework essentially identical with that observed for the chromium monoanion in the tetraethylammonium salt.
- (17) J. L. Petersen, J. P. O'Connor, J. K. Ruff, and L. F. Dahl, unpublished research, 1974.
- (18) (a) U. Anders and W. A. G. Graham, *Chem. Commun.*, 499 (1965); *J. Am. Chem. Soc.*, 89, 539 (1967); (b) W. F. Edgell and N. A. Paauwe, *Chem. Commun.*, 284 (1969); N. A. Paauwe, Ph.D. Thesis, Purdue University, 1968; (c) H. D. Kaesz and R. B. Saillant, *Chem. Rev.*, 72, 231 (1972); S. W. Kirtley, Ph.D. Thesis, University of California at Los Angeles, Aug 1971; (d) D. C. Harris and H. B. Gray, *J. Am. Chem. Soc.*, 97, 3073 (1975).

Jacques Roziere, Jack M. Williams*

Chemistry Division, Argonne National Laboratory Argonne, Illinois 60439

Robert P. Stewart, Jr.

Department of Chemistry, Miami University Oxford, Ohio 45056

Jeffrey L. Petersen

Department of Chemistry, West Virginia University Morgantown, West Virginia 26506

Lawrence F. Dahl*

Department of Chemistry, University of Wisconsin-Madison Madison, Wisconsin 53706 Received January 18, 1977

Cadmium-113 Nuclear Magnetic Resonance Studies of ¹¹³Cd(II)-Substituted Human Carbonic Anhydrase B

Sir:

Carbonic anhydrases (carbonate hydrolyase EC 4.2.1.1) are zinc metalloenzymes found in animals, plants, and certain bacteria, which catalyze the reversible hydration of carbon dioxide ($CO_2 + H_2O = HCO_3^- + H^+$), the hydrolysis of certain esters, and various other reactions.¹ Carbonic anhydrases from human erythrocytes (HCA) are monomeric enzymes of molecular weight ~29 000, each molecule containing

Figure 1. ¹¹³Cd FT NMR spectra at 25 °C of 96% isotopically enriched ¹¹³Cd¹¹HCAB in 85% H₂O/D₂O and 25 mM Tris sulfate. Chemical shifts (ppm) based on 1.0 M CdSO₄ at -2.8 ppm (ref 5a). No proton decoupling was employed. pH* values are uncorrected for presence of 15% D₂O. Exponential multiplication with 7 Hz line broadening was applied to the free-induction decays: (A) 5 mM enzyme, pH* 9.7, no inhibitors present, 12-h accumulation; (B) 7 mM enzyme, pH* 9.2, 2 equiv of NaCl added, 5-h accumulation; (C) above sample, plus 1 equiv of K¹³ CN (90% isotopic enrichment), 10-h accumulation.

a single equivalent of firmly bound Zn(II) which is required for catalytic activity. X-ray crystallographic studies of the low-activity (HCAB)^{2a} and high-activity (HCAC)^{2b} isozymes reveal the zinc ions near the bottoms of 12–15 Å clefts, coordinated to nitrogen atoms from three histidyl side chains in distorted tetrahedral geometry, with the fourth coordination sites presumably occupied by water molecules or hydroxide ions. Kinetic studies on HCA point to the existence of two (or more) species per isozyme in acid-base equilibrium having pK_a values near 7, with the high-pH forms producing faster hydration rates. The identities of the various active species and the detailed mechanisms of their action remain in dispute.³

Direct observation by NMR of the metal at the active site of a metalloenzyme is expected to provide information regarding the chemical environment of the active site, free from the background interference characteristic of ¹H and ¹³C NMR spectra of proteins. Advances in sensitivity of modern Fourier transform NMR spectrometers and the use of large (15-20 mm o.d.) sample tubes have made it possible to consider direct observation of individual atom resonances for millimolar enzyme solutions.⁴ However, ¹¹³Cd, with its spin quantum number $I = \frac{1}{2}$, is expected to produce superior NMR spectra in a $^{113}Cd(II)$ -substituted enzyme over that of ^{67}Zn , with its lower gyromagnetic ratio and $I = \frac{5}{2}$, with the resultant likelihood of quadrupole broadened resonances in the ⁶⁷Zn(II) -enzyme. Furthermore, it has been demonstrated that ¹¹³Cd, like many heavy metals, exhibits a large chemical shift range (>600 ppm), making it potentially very sensitive to changes in the active site environment.5

Replacement of zinc ions by other divalent metal ions has often been used to provide spectroscopic probes of the active site of carbonic anhydrase. With the notable exception of Co(II), most divalent metal ions fail to restore much catalytic activity. Recently, however, it has been shown that Cd(II)-HCAB is an effective catalyst, at least for the hydrolysis of *p*-nitrophenylacetate, with a pK_a value of ~9.1 for the activity-linked functional group.⁶

Figure 1A shows the ¹¹³Cd NMR spectrum⁷ at 25 °C of 4 mL of ¹¹³Cd(II)HCAB⁸ at pH* 9.7 in the absence of mono-

valent anions or other inhibitors. This spectrum shows a single, broad (\sim 300 Hz) line centered at about 228 ppm from aqueous Cd(II) at infinite dilution. Under no experimental condition at 25 °C have we observed a resonance more narrow than ~250 Hz for uninhibited ¹¹³Cd¹¹HCAB. This is at variance with a recent report⁹ of a rather sharp (28 Hz) resonance centered at 146 ppm for ¹¹³Cd¹¹HCAB at pH 9.6. Our studies on complexes of Cd(II) with heterocyclic nitrogen ligands result in ¹¹³Cd resonances in the range 200 to 270 ppm.¹⁰ In the pH* range 7.3-9.7 we have consistently observed a broad peak of \sim 300 Hz or greater line width, generally centered at about 200 ppm at lower pH* values and about 230 ppm at higher pH* values.

Figure 1B shows the effect of addition of 2 equiv of NaCl. The resonance sharpens to ~ 60 Hz, and the chemical shift value is 238.6 ppm. The addition of several more equivalents of NaCl has no discernible effect. The effect of a single equivalent of NaCl has not yet been determined. Assuming the presence of a single, tight Cl⁻ binding site with at least 90% occupancy, we calculate a Cl⁻ dissociation constant of $7 \times$ 10^{-4} M or less. With the reported inhibition constant $K_i \ge 2$ $\times 10^{-2}$ M for Cd¹¹HCAB,⁶ it is unlikely that Cl⁻ binds directly to Cd(II) under the conditions of Figure 1B. There is ample evidence for the existence of two strong anion binding sites^{3b,11}—one which inhibits enzyme activity, presumably by direct metal binding, and an even tighter but noninhibitory binding site which is probably within ~ 4 Å of the metal ion. The presence of Cl⁻ bound near the metal has apparently affected whatever exchange process is responsible for the peak broadening in uninhibited ¹¹³Cd^{II}HCAB.

Any ¹¹³Cd resonance of line width less than \sim 45 Hz in the proton-coupled ¹¹³Cd¹¹HCAB spectrum must be viewed cautiously considering the presence of five C(2) and C(4) protons^{2a} with vicinal Cd-N-C-H spin-coupling constants (10-13 Hz in analogous compounds¹²).

Figure 1C shows the ¹¹³Cd¹¹HCAB spectrum after addition of 1 equiv of K¹³CN (≥90% isotopic enrichment, Merck). The resonance splits into a doublet centered at 410 ppm with a separation $J_{CdC} = 1,060$ Hz and line width ~ 50 Hz. This is the largest known cadmium coupling constant and indicates a Cd-C bond of lifetime $> 10^{-2}$ s. Addition of a second equivalent of K¹³CN produced no further change.¹³ There has been considerable speculation regarding the existence of stable pentacoordinate Zn(II) in HCA.¹⁴ Considering the larger ionic radius of Cd(II), we conclude that there is probably only one available binding site for CN⁻ in Zn^{II}HCAB. A large excess of ¹³CN⁻ has not yet been tried on ¹¹³Cd¹¹HCAB, although this was apparently not necessary to produce the pentacoordinate species in Co^{II}HCAB.^{14b}

Our experiments to date indicate T_1 values of 2-3 s for ¹¹³Cd in Cd(II)HCAB based on flip angle optimization. In agreement with a previous report,⁹ we find that proton decoupling leads to a loss of the 113Cd signal. These results and our dipolar T_1 and N.O.E. calculations based on five carbon-bound imidazole protons at 2.8 Å distance from ¹¹³Cd(II) in a molecule having a rotational correlation time of 10^{-8} s (and a negative gyromagnetic ratio for ¹¹³Cd) are consistent with a purely dipolar relaxation mechanism.

Acknowledgments. This research was initiated under the National Institutes of Health Special Research Fellowship 1-F03-GM-54,907-01 (1972-1973) at the Biochemistry Department, University of Gothenburg, Sweden, and was supported by National Science Foundation Grants GP-38122 and MPS72-05123 A02. The U.C.R. Bruker WH90D-18 multinuclear FTNMR spectrometer was provided by Bio-medical Sciences Grant 5 S05 RR07010-09 from the NIH, and NSF Grant MPS75-06138. An intramural grant was provided by the U.C.R. Committee on Research.

We are deeply grateful to Dr. Sven Lindskog, Dr. Lou Henderson, and Professor Bo Malmstrom for their advice on preparation and handling of HCA, and for a gift of HCAB. We are grateful to Professor Paul Ellis for open discussions, and to Toni Keller for the use of Bruker facilities, summer 1975.

References and Notes

- Reviewed by S. Lindskog, L. Henderson, K. K. Kannan, A. Liljas, P. O. Nyman, and B. Strandberg in "The Enzymes", 3rd ed, Vol. V, P. D. Boyer, Ed., Academic Press, New York, N.Y., 1971, pp 587–665.
- (2) (a) K. K. Kannan, B. Notstrand, K. Fridborg, S. Lovgren, A. Ohlsson, and M. Petef, Proc. Natl. Acad. Sci. U.S.A., 72, 51 (1975); (b) A. Liljas, K. K. Kannan, P.-C. Bergsten, I. Waara, K. Fridborg, B. Standberg, U. Carlbom, L. Jarup, S. Lovgren, and M. Petef, Nature (London), New Biol., 235, 131 (1972)
- 70, 2505 (1973); R. G. Khalifah, ibid., 70, 1986 (1973); S. H. Koenig and R. D. Brown, III, *ibid.*, **69**, 2422 (1972); A. Lanir, S. Gradstajn, and G. Navon, *Biochemistry*, **14**, 242 (1975); J. M. Pesando, *ibid.*, **14**, 681 (1975); Y. Pocker and L. J. Gulibert, *ibid.*, **13**, 70 (1974).
 See, for example, natural abundance ¹³C protein spectra by A. Allerhand, D. Elidon and E. Olivitation and E. Olivitationand and E.
- R. F. Childers, and E. Oldfield, *Biochemistry*, **12**, 1335 (1973).
 (5) (a) A. D. Cardin, P. D. Ellis, J. D. Odom, and J. W. Howard, Jr., *J. Am. Chem. Soc.*, **97**, 1672 (1975); (b) G. E. Maclei and M. Borzo, *J. Chem. Soc., Chem.* Commun., 394 (1973); R. J. Kostelnik and A. A. Bother-By, J. Magn. Reson., 14, 141 (1974); R. A. Haberkorn, L. Que, Jr., W. O. Gillum, R. H. Hoim, C. S. Liu, and R. C. Lord, *inorg. CHEM/=* [5= 24]- (1976)
- (6) R. Bauer, P. Limkilde, and J. T. Johansen, Blochemistry, 15, 334
- (1976). (7) 113 Cd NMR spectra were obtained at ~19.97 MHz on a multinuclear (4–37 84, 90 MHz) Bruker WH 90D-18 using 15 mm o.d. tubes and internal or external ²H fleid-frequency lock. The 18 in. wide-gap magnet accommodates up to 20 mm o.d. tubes with Dewaring, and the spectrometer has guadrature phase detection on all nuclei.
- (8) HCA was prepared from erythrocytes by the method of L. E. Henderson and D Henriksson, Anal. Blochem., 51, 288 (1973), and apoHCAB by the method of S. Lindskog and P. O. Nyman, Biochem. Biophys. Acta, 85, 462 (1964). ¹¹³Cd-HCAB was made by direct addition to the appenzyme of 1 equiv of ¹¹³CdSO₄, the latter prepared by dissolving ¹¹³CdO (96% enriched, Oak Ridge National Laboratories) in a slight excess of dilute H2SO4 followed by neutralizing with Tris. High concentrations were obtained by prior ly-ophilization of ¹¹³Cd-HCAB or appenzyme.
- M. Armitage, R. T. Pajer, A. J. M. Schoot Ulterkamp, J. F. Chlebowski, and J. E. Coleman, J. Am. Chem. Soc., 98, 5710 (1976).
- (10) Cd(II) 0.3 M (as sulfate or perchiorate), plus ligands in fully basic form; (a) large excess of imidazole (pH ~12). [Cd(Im)₈]²⁺, 201 ppm; (b) 0.6 M histidine methyl ester, [Cd(MeHis)₂]²⁺, 224 ppm; (c) 0.9 M histidine methyl ester, [Cd(MeHis)₃]²⁺, 254 ppm; (d) 0.9 M 1,10-phenanthroline, [Cd(ophen)₃]²⁺, 266 ppm.
 (11) LA Gregoria C. Matter and L. Edgell, *L D(a*) Chem. 040, 4001 (1067).
- (11) J. A. Verpoorte, S. Mehta, and J. T. Edsali, J. Blol. Chem., 242, 4221 (1967);
- (11) S. A. Verpolite, S. Navon, *Biochim, Biophys. Acta*, 341, 75 (1974).
 (12) For example, in precisely stoichiometric Cd^{II} EDTA²⁻ at pH ~8.5 J. L. Sudmeler and C. N. Reilley, *Inorg. Chem.*, 5, 1047 (1966), and R. J. Day and C. N. Reilley, *Anal. Chem.*, 36, 1073 (1964). These coupling constants broaden the ¹¹³Cd spectrum of Cd^{II}EDTA²⁻ to ~100 Hz in a multiplet signal at 100 ppm at 100 ppm. (13) The 13 C spectrum at pH* 7.5 shows the bound 13 CN⁻ as a sharp (<10 Hz
- (13) The ¹⁹C spectrum at pH* 7.5 shows the bound ¹⁹CN⁻ as a sharp (<10 Hz line width) doublet (J_{CdC} = 1,060 Hz) centered at 145 ppm downfield of Me₄SI, and any excess ¹³CN⁻ as a broader (~25 Hz) singlet at 116 ppm. The ¹³C chemical shift of bound ¹³CN⁻ in Cd¹¹HCAB agrees within 1.2 ppm of the value reported for Zn¹¹HCAB (J. Feeney, A. S. V. Burgen, and E. Greil, *Eur. J. Biochem.*, **34**, 107 (1973).
 (14) (a) B. L. Vallee and R. J. P. Williams, *Proc. Natl. Acad. Sci. U.S.A.*, **59**, 498 (2000).
- (1968); K. K. Kannan, I. Vaara, B. Notstrand, S. Lovgren, A. Boreil, K. Fridborg, and M. Petef in "Proceeding on Drug Action at the Molecular Level", G. C. K. Roberts, Ed., The Macmilian Press, in press; E. Greil and R. C. Bray, *Biochim. Biophys. Acta*, **236**, 503 (1971); (b) J. S. Taylor and J. E. Coleman, J. Biol. Chem., 246, 7058 (1971).

James L. Sudmeier,* Stuart J. Bell

Department of Chemistry, University of California Riverside, California 92521 Received February 1, 1977

Electron Spin Exchange in Rigid Biradicals

Sir:

We have prepared six nitroxyl biradicals in which the extent of conformational change is strongly limited by the rigidity of the structure connecting the radical groups. These biradicals